Wywilżna karłowata – determinowanie płci przez stosunek liczby chromosomów X do autosomów

Arkusz z biologii rozszerzonej marzec 2021 NOWA FORMUŁA - PRÓBNY

Wywilżna karłowata (Drosophila melanogaster) ma 4 pary chromosomów, z których jedna para to chromosomy płci: X i Y. U tego gatunku płeć jest determinowana przez stosunek liczby
chromosomów X do autosomów. Samice mają zazwyczaj dwa chromosomy X, a normalne płodne samce jeden chromosom X i jeden chromosom Y. Geny warunkujące kolor oczu (czerwony lub biały) oraz kolor ciała (jasnobrunatny lub czarny) dziedziczą się niezależnie od siebie. Allel warunkujący barwę czerwoną oczu (A) jest dominujący, podobnie jak allel warunkujący jasnobrunatną barwę ciała (B).
Aby sprawdzić, która z podanych cech dziedziczy się autosomalnie, a która jest sprzężona z płcią, skrzyżowano czarnego samca (XY) o oczach czerwonych z jasnobrunatną samicą (XX) o oczach białych. Stwierdzono, że wszystkie osobniki z pierwszego pokolenia miały jasnobrunatną barwę ciała, ale wszystkie samce miały oczy białe, natomiast wszystkie samice
miały oczy czerwone.

 

1. Podaj genotypy samca i samicy oraz ich potomstwa w przeprowadzonym doświadczeniu. Zastosuj podane w tekście oznaczenia alleli.

Genotyp samca:

Genotyp samicy:

Genotypy potomstwa (F 1):

 

2. Podaj genotypy czarnego samca i jasnobrunatnej samicy, w których potomstwie mogłyby się pojawić się osobniki o czarnej barwie ciała. Odpowiedź uzasadnij.

Genotyp samca:

Genotyp samicy:

Uzasadnienie:

Uwarunkowania genetyczne nietolerancji laktozy. Podłoże nietolerancji laktozy.

ARKUSZ MATURALNY Z BIOLOGIA ROZSZERZONEJ MAJ 2020 NOWA FORMUŁA

U wielu dorosłych osób występuje nietolerancja laktozy, do której dochodzi, gdy organizm
nie wytwarza wystarczającej ilości enzymu – laktazy. Po spożyciu pokarmów mlecznych
pojawiają się u nich dolegliwości ze strony układu pokarmowego, np. bóle brzucha, biegunki.
Aktywność laktazy jest największa u niemowląt, dla których mleko stanowi główne źródło
pożywienia. Po okresie niemowlęcym produkcja tego enzymu przez całe życie występuje
jedynie u części ludzi, a u innych zmniejsza się wraz z wiekiem.
Laktaza jest kodowana przez autosomalny gen LCT, który ma trzy allele:
• allel L – warunkujący aktywność laktazy przez całe życie;
• allel l1 – recesywny allel powodujący brak laktazy w wieku dorosłym;
• allel l2 – recesywny allel względem L i l1, powodujący całkowity brak laktazy.
Wyróżnia się trzy typy nietolerancji laktozy:
• wrodzoną nietolerancję laktozy, która występuje bardzo rzadko i wymaga całkowitej
eliminacji laktozy z diety już u noworodków;
• pierwotną nietolerancję laktozy, spowodowaną zmniejszonym wytwarzaniem laktazy wraz z wiekiem;
• nietolerancję wtórną (nabytą), której przyczyną mogą być infekcje bakteryjne, choroby jelit, a nawet niedożywienie.
Diagnostyka i rozpoznanie przyczyn nietolerancji laktozy są ważne ze względu na możliwe jej powikłania, m.in. obniżone przyswajanie wapnia grożące osteoporozą, bóle stawów i kości. Obecnie łatwo dostępne są badania genetyczne pozwalające stwierdzić predyspozycję genetyczną do pierwotnej nietolerancji laktozy.

Na podstawie: G. Drewa, T. Ferenc, Genetyka medyczna, Wrocław 2015,
http://www.poradnikzdrowie.pl

Na podstawie przedstawionych informacji zapisz w tabeli wszystkie możliwe genotypy członków rodziny, w której dziecko ma pierwotną nietolerancję laktozy i ma ją także jego ojciec, natomiast matka dziecka toleruje laktozę w pokarmie. Wykorzystaj oznaczenia alleli podane w tekście.

Uwarunkowania genetyczne nietolerancji laktozy. Podłoże nietolerancji laktozy.

Określ prawdopodobieństwo (w %) wystąpienia wrodzonej nietolerancji laktozy
u kolejnego dziecka rodziców, u których nie występuje żadna postać nietolerancji laktozy, ale mają oni już jedno dziecko chore na tę chorobę. Odpowiedź uzasadnij, uwzględniając genotypy rodziców lub zapisując odpowiednią krzyżówkę genetyczną.

Zaznacz poprawne dokończenie poniższego zdania – wybierz odpowiedź spośród A–B oraz odpowiedź spośród 1.–4.

Laktoza, obecna w ludzkim mleku, jest substancją

Uwarunkowania genetyczne nietolerancji laktozy. Podłoże nietolerancji laktozy.

Wybierz i podkreśl nazwę ludzkiego narządu układu pokarmowego, w którym jest trawiona laktoza.
ślinianki                         żołądek                  wątroba               trzustka                     jelito cienkie

Wyjaśnij, w jakim celu, w razie wystąpienia objawów nietolerancji laktozy u osoby dorosłej, należy określić, czy ta nietolerancja ma podłoże genetyczne, czy też została nabyta. W odpowiedzi odwołaj się do sposobu postępowania w zależności od podłoża nietolerancji.

Wyjaśnij, dlaczego wrodzona nietolerancja laktozy jest uznawana za chorobę,
a nietolerancja pierwotna – za wariant normy. W odpowiedzi odnieś się do sposobu odżywiania się człowieka na różnych etapach jego rozwoju.

1. Wrodzona nietolerancja laktozy:

 

2. Pierwotna nietolerancja laktozy:

 

Dlaczego krzyżowanie się żbików z kotami domowymi stanowi zagrożenie dla istnienia żbika europejskiego?

ARKUSZ MATURALNY Z BIOLOGIA ROZSZERZONEJ MAJ 2020 NOWA FORMUŁA

Żbik europejski (Felis silvestris silvestris) jest obok rysia euroazjatyckiego (Lynx lynx)
jedynym dzikim przedstawicielem rodziny kotowatych (Felidae) występującym w Polsce.
Żbiki są terytorialne: terytorium samca pokrywa się z terytoriami 2–3 samic. Żyją w lasach liściastych lub mieszanych, z bogatym podszytem. Pokarm zdobywają przede wszystkim na obrzeżach lasów, a także w zakrzaczeniach śródpolnych, na polanach leśnych, w dolinach potoków i rzek.
Żbiki występują w południowo-wschodniej Polsce i są to rozproszone, niewielkie populacje – o łącznej liczebności co najwyżej 200 osobników. Trudność w oszacowaniu liczby żbików sprawia ich swobodne krzyżowanie się z kotami domowymi (Felis silvestris catus), które pochodzą od afrykańskiego podgatunku żbika (Felis silvestris lybica). Niektórzy naukowcy uważają nawet, że kotożbiki (płodne mieszańce kota ze żbikiem) stanowią większość osobników żyjących na wolności. Jak dotychczas, ścisła ochrona gatunkowa żbika oraz ochrona jego siedlisk nie doprowadziły do znaczącego wzrostu liczebności populacji tego kota.
Głównymi czynnikami zagrażającymi zmienności genetycznej żbika europejskiego są także mała liczebność populacji i postępująca fragmentacja jego siedlisk. Zalecanym działaniem ochronnym jest wyznaczenie i odtworzenie sieci korytarzy migracyjnych łączących ostoje tego gatunku.
Na podstawie: Polska Czerwona Księga Zwierząt. Kręgowce, pod red. Z. Głowacińskiego, Warszawa 2001,
P. Adamski i inni, Gatunki zwierząt (z wyjątkiem ptaków). Poradniki ochrony siedlisk i gatunków Natura 2000,
t.6, Warszawa 2004.

Na podstawie przedstawionych informacji oceń, które z poniższych wniosków
są uprawnione. Zaznacz T (tak), jeśli wniosek jest uprawniony, albo N (nie) – jeśli jest nieuprawniony.

Dlaczego krzyżowanie się żbików z kotami domowymi stanowi zagrożenie dla istnienia żbika europejskiego?

Wyjaśnij, dlaczego krzyżowanie się żbików z kotami domowymi stanowi zagrożenie dla istnienia żbika europejskiego. W odpowiedzi odnieś się do zmian w puli genowej żbika.

Na podstawie przedstawionych informacji wyjaśnij, dlaczego rozbudowa sieci drogowej na terenach, na których występują żbiki europejskie, jest zagrożeniem dla ich liczebności i różnorodności genetycznej. W odpowiedzi odnieś się do biologii żbika lub procesów ewolucyjnych.
1. Zagrożenie dla ich liczebności:
2. Zagrożenie dla ich różnorodności genetycznej:

drogi transferu materiału genetycznego pomiędzy komórkami bakterii

Arkusz maturalny z biologii rozszerzonej lipiec 2020

Transfer materiału genetycznego (DNA) między komórkami bakterii odbywa się na drodze koniugacji, transdukcji lub transformacji:
koniugacja – polega na jednokierunkowym transferze plazmidowego DNA z jednej komórki
bakteryjnej do drugiej;

transdukcja – zachodzi z udziałem wirusów;

transformacja – polega na pobieraniu przez bakterie materiału genetycznego ze środowiska.

 

1. Uporządkuj przedstawione poniżej etapy koniugacji bakterii (A–E) w kolejności ilustrującej przebieg tego procesu.

drogi transferu materiału genetycznego pomiędzy komórkami bakterii

2. Uzasadnij, że do przekazania informacji genetycznej zapisanej w plazmidzie, na drodze koniugacji, wystarczy przeniesienie do komórki biorcy tylko jednej nici DNA
plazmidowego.

 

3. Uzasadnij, że bakteria, która jest biorcą DNA plazmidowego w procesie koniugacji, może odnieść korzyści z tego procesu. W odpowiedzi uwzględnij przykład takiej korzyści.

 

4. Uzasadnij, że bakteriofagi mogą być wektorami przenoszącymi DNA pomiędzy komórkami bakterii.

 

5. Wyjaśnij, dlaczego intensywna międzykomórkowa wymiana informacji genetycznej zachodząca w populacji bakterii zapewnia tym mikroorganizmom bardzo szybkie tempo ewolucji adaptacyjnej.

 

6. Do podanych w tabeli cech wektora plazmidowego 1.–3., wykorzystywanego przy wprowadzaniu obcego DNA do komórek bakterii, przyporządkuj spośród A–D po jednym jego znaczeniu w tym procesie.

A.
Umożliwia rozdzielenie wektorów do komórek potomnych.
B. Umożliwia selekcję szczepów, które pobrały plazmid.

C. Umożliwia włączenie obcego DNA do wektora plazmidowego.

D. Ułatwia miejscowe rozplecenie helisy DNA.

drogi transferu materiału genetycznego pomiędzy komórkami bakterii

porosty – organizmy pionierskie

Arkusz maturalny z biologii rozszerzonej lipiec 2020

Większość porostów ma warstwę korową, o gęsto splecionych strzępkach grzyba, izolującą wnętrze porostu od bezpośrednich wpływów środowiska zewnętrznego. Pod nią znajduje się warstwa zbudowana z komórek glonów, jeszcze głębiej – warstwa rdzeniowa utworzona ze strzępek grzyba, a następnie – dolna warstwa korowa.
W plechach porostów, często w warstwie korowej, występują tzw. specyficzne wtórne metabolity porostowe. Te związki powstają dzięki temu, że komórki fotosyntetyzujące produkują węglowodany, które są następnie transportowane do komórek grzyba, gdzie w licznych szlakach metabolicznych przekształcane w metabolity wtórne. one związkami aktywnymi biochemicznie – wykazują m.in. działanie bakteriobójcze, hamują kiełkowanie wielu nasion oraz zarodników mchów.

Niektóre z wtórnych metabolitów porostowych absorbują szkodliwe promieniowanie UVA i UVB, a jeszcze inne posiadają zdolność do selektywnego usuwania z podłoża skalnego jonów Ca2+ oraz Mg2+ , w wyniku czego naruszona zostaje struktura skały.

 

1. Na podstawie tekstu wykaż, że wytwarzanie wtórnych metabolitów przez porosty

1.umożliwia im skuteczną konkurencję międzygatunkową:

2. chroni DNA ich komórek przed uszkodzeniami:

 

2. Określ znaczenie wtórnych metabolitów porostowych w funkcjonowaniu porostów jako organizmów pionierskich.

 

3. Spośród wymienionych poniżej przykładów organizmów wybierz i podkreśl wszystkie te, których komórki mogą być fotobiontami współtworzącymi porosty.

bruzdnice     sinice     krasnorosty     zielenice

Dystrofia mięśniowa Duchenne’a – najczęstsza i najcięższa z postępujących dystrofii mięśniowych

Arkusz maturalny z biologii rozszerzonej lipiec 2020

Dystrofia mięśniowa Duchenne’a jest najczęstszą i najcięższą z postępujących dystrofii mięśniowych. Jest to choroba genetycznie uwarunkowana – dziedziczy się w sposób recesywny sprzężony z płcią. Wynikiem obecności nieprawidłowego allelu d genu DMD, jest synteza nieprawidłowej dystrofiny w komórce mięśniowej białka tworzącego ,,szkielet” komórki mięśniowej. Chorzy umierają zwykle w wieku przedreprodukcyjnym.
Poniżej na schemacie przedstawiono fragment sekwencji nukleotydowej DNA (poszczególne kodony zostały oddzielone przerwami) prawidłowego (I) i zmutowanego genu DMD (II). Zamieszczone fragmenty nie zawierają intronów.


I. Fragment prawidłowej sekwencji nici kodującej:

5’ CAG CAG CAG CAG CAG 3’

II. Fragment sekwencji nici kodującej, w której występuje mutacja:
5’ CAG CAG TAG CAG CAG 3’

 

1. Wpisz, posługując się trójliterowymi skrótami nazw aminokwasów, w wykropkowane miejsca na schemacie sekwencję kodowanego fragmentu białka, zakodowanego w zapisanych fragmentach DNA I i II genu DMD.

 

2. Na podstawie sekwencji I i II genu DMD określ rodzaj mutacji genowej warunkującej rozwój dystrofii mięśniowej Duchenne’a.

 

3. Określ, jakie będą skutki przedstawionej mutacji dla pierwszorzędowej struktury białka, w porównaniu z jego prawidłową strukturą.

 

4. Wyjaśnij, dlaczego mimo działania doboru naturalnego w populacji ludzkiej utrzymuje się allel warunkujący zespół Duchenne’a.

 

5. Określ, jakie jest prawdopodobieństwo, że kolejne dziecko zdrowych rodziców, którzy mają już jednego syna chorego na dystrofię mięśniową typu Duchenne’a, będzie chore na tę chorobę. W odpowiedzi uwzględnij genotypy rodziców oraz zapisz krzyżówkę genetyczną lub obliczenia.

 

Prawdopodobieństwo, że kolejne dziecko tych rodziców będzie chore: ……. %

Adermatoglifia – bardzo rzadkie zaburzenie genetyczne

Arkusz maturalny z biologii rozszerzonej lipiec 2020

Adermatoglifia to bardzo rzadkie zaburzenie genetyczne. Powoduje ono, że dana osoba nie ma linii papilarnych, a więc nie pozostawia charakterystycznych odcisków palców. Poza tym osoby z adermatoglifią są całkowicie zdrowe, w niewielkim stopniu zredukowana jest tylko u nich liczba gruczołów potowych.
Przyczyną adermatoglifii jest mutacja genu SMARCAD1, który ma swój locus w czwartym chromosomie. Ta mutacja jest substytucją, która zaburza splicing (składanie genu) i uniemożliwia syntezę prawidłowego białka niezbędnego do wytworzenia linii papilarnych. Pomimo że do wystąpienia adermatoglifii wystarczy jeden zmutowany allel, stwierdzono ją dotychczas tylko w kilku rodzinach na świecie.

Inną przyczyną braku linii papilarnych jest mutacja genu KTR14. Efektem tej mutacji jest choroba DPR (łac. dermatopathia pigmentosa reticularis). Osoby dotknięte DPR, oprócz braku linii papilarnych, charakteryzują się cieńszymi i łamliwymi włosami, oraz nierówną pigmentacją skóry.

 

1. Zaznacz poprawne dokończenie poniższego zdania wybierz odpowiedź spośród A–B oraz odpowiedź spośród 1.–2.

Allel wywołujący adermatoglifię, w stosunku do allelu niepowodującego tego zaburzenia, jest

Adermatoglifia – bardzo rzadkie zaburzenie genetyczne

 

2. Wyjaśnij, dlaczego w przypadku adermatoglifii, w odróżnieniu od DPR, mówi się raczej o zaburzeniu genetycznym, a nie – o chorobie genetycznej. W odpowiedzi odwołaj się do efektów fenotypowych.

 

3. Określ, który z genów gen warunkujący adermatoglifię czy gen warunkujący DPR – ma silniejszy efekt plejotropowy. Odpowiedź uzasadnij.

 

4. Oceń, czy poniższe stwierdzenia dotyczące adermatoglifii są prawdziwe. Zaznacz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Adermatoglifia – bardzo rzadkie zaburzenie genetyczne

 

5. Określ, jakie znaczenie adaptacyjne miało w toku ewolucji pojawienie się u naczelnych linii papilarnych na wewnętrznych powierzchniach dłoni i stóp.

gen RB1 zlokalizowany na 13 chromosomie

Arkusz maturalny z biologii rozszerzonej kwiecień 2020

Prawidłowy produkt genu RB1, znajdującego się na 13 chromosomie, zapewnia właściwą kontrolę podziałów komórkowych. Recesywna mutacja genu RB1 może prowadzić do rozwinięcia się siatkówczaka groźnego nowotworu siatkówki oka. Zaobserwowano, że ok. połowa chorych dziedziczy tylko jeden zmutowany allel od rodzica, a drugi pojawia się dopiero w czasie rozwoju zarodkowego. Stwierdzono, że przyczyną pojawienia się drugiego recesywnego allelu może być zdarzający się błąd podczas podziału mitotycznego. Skutkiem tego jest powstanie komórki zawierającej w danej parze chromosomów homologicznych trzy, a nie dwa chromosomy potomne. Zdarza się, że dodatkowy chromosom jest w dalszych etapach rozwojowych gubiony i w ten sposób powstają komórki o prawidłowej liczbie chromosomów. Proces przejścia od komórki heterozygotycznej do homozygotycznej nazywany jest utratą heterozygotyczności.
Na schemacie przedstawiono etapy mitozy (A–D) podczas rozwoju zarodkowego kończące się powstaniem siatkówczaka (E).


Uwaga: W celu uproszczenia, komórka macierzysta na schemacie zawiera tylko trzy pary chromosomów homologicznych, z których jeden zawiera recesywny, zmutowany allel (oznaczony kropką).

gen RB1 zlokalizowany na 13 chromosomie

1. Podaj, na którym z etapów przemian A–E prowadzących do powstania siatkówczaka nastąpiła utrata heterozygotyczności komórki, skutkująca rozwojem siatkówczaka.

 

2. Wybierz ze schematu ten etap mitozy A–D, w którym doszło do błędu w rozchodzeniu się chromosomów, i określ, na czym ten błąd polega.

 

3. Na podstawie tekstu określ, w jakim przypadku dziecko rodziców, którzy są zdrowi, ale jedno z nich jest nosicielem recesywnego allelu, może zachorować na siatkówczaka oka. Odpowiedź uzasadnij, odnosząc się do genotypów rodziców i genotypu chorego dziecka.

 

4. Oceń, czy poniższe stwierdzenia dotyczące genetycznego podłoża powstania siatkówczaka oka są prawdziwe. Zaznacz P, jeśli stwierdzenie jest prawdziwe, albo F jeśli stwierdzenie jest fałszywe.

gen RB1 zlokalizowany na 13 chromosomie